IEEE: About Wind Turbines

andre kesteloot andre.kesteloot at verizon.net
Wed Feb 3 11:39:00 CST 2010


*POSTED BY:* Bill Sweet // Thu, January 28, 2010

New turbines amounting to almost 10 gigawatts were installed in the 
United States in 2009 
<http://www.awea.org/newsroom/releases/01-26-10_AWEA_Q4_and_Year-End_Report_Release.html>, 
bringing the country's total wind capacity to about 35 GW, according to 
data released by the American Wind Energy Association this week. Next 
week the Global Wind Energy Council, based in Brussels, is expected to 
release figures showing that wind installation worldwide almost equalled 
the booming growth rates seen in recent years, which have been around 28 
percent per annum.

The 2009 performance is all the more remarkable in light of last year's 
severe economic recession and a sharp run-up in wind installation costs, 
going back several years. Steve Sawyer, secretary general of the global 
council, points out that the cost of steel doubled from 2004 to 2006-7 
and the cost of copper almost as much; pretty much the same was true for 
the price of the fiberglass used in turbine blades, made from a 
petroleum feedstock. Four or five years ago the cost of European wind 
installation was about 1000 euros per kilowatt (or roughly $1.4/W), says 
Sawyer, but in the next years it increased to around 1400 euros/KW, 
mainly because of the higher commodity prices. Wind costs peaked about a 
year ago and have since come down some, but only a little.

The China price, notes Sawyer, is to be sure 30-40 percent lower than 
the global average--and the India prices is even lower than that.

Putting its spin on the rather sensational 2009 news, the American wind 
association asserts 
<http://www.awea.org/newsroom/releases/12-22-09_Wind_Energy_Industry_Highlights_of_2009.html> 
that additional U.S. wind capacity avoids or saves more than 60 million 
metric tons of annual carbon dioxide emissions, 200,000 tons of sulfur 
dioxide, 80,000 tons of nitrous oxide, and 20 billion tons of water. A 
spokesperson for the association claims, perhaps a little dubiously, 
that their numbers crunchers got these results whether the generation 
that wind is substituting for is taken to be the average national mix or 
the specific mix replaced by specific turbines. The amount of wind 
installed last year in the United States, the association boasts--and 
rightly so!-- was equivalent to the amount of new natural gas capacity 
installed. Together, wind and gas accounted for 80 percent of new U.S. 
generating capacity in 2009.

To keep things in perspective, recall that when wind (or solar) capacity 
is compared to baseload fossil or nuclear generation, it is normally 
divided by a factor of three, four or even five, to account for 
intermittancy. (The wind doesn't always blow and the sun doesn't always 
shine.) By that standard, the new wind capacity really is equivalent to 
no more than 3.3 GW of natural gas. But even by that reduced benchmark, 
it's the equal of three nuclear power plants--not a single one of which 
is getting built in the United States at present.

Surveying and elucidating wind cost trends, Sawyer takes note of other 
factors that have been at work. During the peak growth years when global 
demand was straining capacity, a sellers' market contributed to cost 
escalation. Then too, in some cases, the best wind sites were getting 
exhausted and new turbines were having to be installed in more 
challenging circumstances, This has been true for example of Gemany, 
which is having to go off-shore and build larger windmills.

Even so, the European Wind Energy Association did a study last spring in 
which wind was found to be cost-competitive with all other electricity 
generating sources 
<http://www.ewea.org/fileadmin/ewea_documents/documents/publications/reports/Economics_of_Wind_Main_Report_FINAL-lr.pdf>, 
in the current range of carbon prices, at wind speeds of 7 meters per 
second or higher onshore and 8.25 m/s offshore. As Sawyer sees it, 
offshore wind is about where onshore was ten or fifteen years ago in 
terms of technology and economics; it's time now for offshore wind "to 
grow up."

Looking ahead, Sawyer is confident wind will continue to grow at robust 
rates. He says that in systems containing a large wind fraction, the 
wind reduces demand for expensive peaking power and therefore cuts total 
system costs. He believes that standard economics methodology have 
underestimated those savings, and that once this is recognized and 
fixed, wind will look better than ever.



More information about the Tacos mailing list